

Smarter studies Global impact Better health

Treatment changes in cancer clinical trials: design and analysis

Ian White <ian.white@ucl.ac.uk>

MRC Clinical Trials Unit at UCL

Statistical methods and designs in clinical oncology Paris, 9th November 2017

- 1. Treatment changes example and scope
- 2. Estimands what are they and why do they matter?
- 3. Analyses a toolkit
- 4. Designs some important suggestions

Plan

1. Treatment changes

- 2. Estimands
- 3. Analyses
- 4. Designs

Sunitinib trial

- RCT evaluating sunitinib for patients with advanced gastrointestinal stromal tumour after failure of imatinib
 - Demetri et al, Lancet 2006
- Interim analysis found big treatment effect on progression-free survival
- All patients were then allowed to switch to open-label sunitinib
- Next slides are from Xin Huang (Pfizer)

Time to Tumor Progression (Interim Analysis Based on IRC, 2005)

with thanks to Xin Huang (Pfizer) al Trials Unit at UCL

Overall Survival (NDA, 2005)

Overall Survival (ASCO, 2006)

with thanks to Xin Huang (Pfizer)

Overall Survival (Final, 2008)

with thanks to Xin Huangy (Pfizer) al Trials Unit at UCL

Sunintinib trial: explanation?

- The decay of the treatment effect is probably due to treatment switching
- Of 118 patients randomized to placebo arm:
 - 103 patients switched to sunitinib treatment
 - 83 switched within 3 months
 - 19 switched before disease progression
 - 4 never treated with placebo
 - 15 patients did not switch
- Questions
 - what was the effect of assignment to sunitinib?
 - what would this effect have been if no-one in the placebo arm had received sunitinib?
 - especially relevant to NICE (National Institute for Health and Care Excellence) evaluations

The plan

What actually happened (1)

What actually happened (2)

What actually happened (3)

Part of a wider problem

- Note on terminology: people often talk about "treatment cross-overs"
 - to avoid confusion with cross-over trials, I use
 "treatment switches"
- Many trials have not just treatment switching (i.e. to the treatment allocated to the other trial arm), but also more general departures from randomised treatment:
 - changes to non-trial treatments

- changes to no treatment
- multiple treatments
- dose adjustment
- non-compliance with prescribed treatment

In summary, we are talking about

- Treatment changes in cancer trials
- Nature:
 - switches to other trial treatment
 - changes to non-trial or no treatment
 - etc.
- Reason: clinician decision or patient decision
- Mechanism: typically non-random (patients who change treatment differ systematically from those who don't change treatment)

Plan

1. Treatment changes

2. Estimands

- 3. Analyses
- 4. Designs

Defining the question

- For sunitinib, the main question of interest (to funders) was
 - "drug now": treatment as actually given in the sunitinib arm (given until clinical decision to stop, usually due to adverse event / progression)

VS.

- "no drug": no drug at all, even after progression, because it hasn't been approved
- Instead the trial answered
 - "drug now": as actually given in sunitinib arm
 - vs. "deferred drug": as actually given in placebo arm
- That is, the RCT didn't address the main question
- This is a common, but not universal, setting

Three common questions

- What is the effect of assignment to treatment A *in the circumstances of the trial*? (effectiveness; de facto)
 - could be: A immediately vs. A on progression
- What will be the effect of assignment to treatment A *in* other circumstances? ("alternative effectiveness"?)
 - sunitinib example: NICE's question was sunitinib immediately (with discontinuations as in clinical practice) vs. no sunitinib
- What is the effect of treatment A per se (efficacy; de jure)?
 - i.e. while actually given

The three effects estimated here are examples of an estimand = **the thing we want to estimate**

Current thinking in the pharmaceutical world

- The International Committee on Harmonisation (ICH) has a working group on estimands
- They recently (30 Aug 2017) published a draft guidance document:
 - "ICH E9 (R1) addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials"
 - consultation period to 28th Feb 2018
- I'm going to outline its proposals
 - very important for pharma trials
 - will affect academic trials

Key message: let the estimand come first

Figure 1: Aligning target of estimation, method of estimation, and sensitivity analysis, for a given trial objective

"Intercurrent events"

- Intercurrent events are "events that occur after treatment initiation and either preclude observation of the variable or affect its interpretation". E.g.
 - withdrawal from follow-up
 - death [when not a major trial outcome]
 - discontinuation of trial treatment
 - treatment switching [i.e. to other trial treatment]
 - use of an alternative treatment [e.g. rescue]
- Main challenge in defining an estimand is in defining how intercurrent events will be handled

Five strategies for addressing intercurrent events in defining an estimand

- 1. Treatment policy strategy
 - ignore intercurrent events: we are interested in the effect of assignment to a treatment
- 2. Composite strategy
 - combine intercurrent events with clinical outcome
- 3. Hypothetical strategy
 - imagine what would happen if no intercurrent events occurred
- 4. Principal Stratum strategy
 - restrict to a subgroup who would not experience intercurrent events (however they were randomised)
- 5. "While on treatment" strategy
 - dangerously vague in my view

Next I'll relate these to analyses.

Plan

- 1. Treatment changes
- 2. Estimands
- **3.** Analyses
- 4. Designs

Analysis: toolkit

Method

- 1. Ignore intercurrent events
 - this is intention-to-treat analysis
- 2. Combine
- 3. Exclude
 - censor patients at intercurrent event
 - IPCW (soon)
- 4. Model
 - model effect of intercurrent events
 - IV / RPSFTM (next)

Estimand

Treatment policy

Composite Hypothetical

Challenges

Need to handle missing data

Interpretation Risk of selection bias

Hypothetical / principal stratum Modelling many treatment effects

IV: idea

- Modelling approach: relate observed outcomes Y to *potential outcomes in the absence of treatment* Y(0) through a "structural model" involving treatment d and a parameter ψ
 - e.g. for continuous outcome $Y(d) = Y(0) + \psi d$
 - for survival outcome we use the RPSFTM (next)
- NB because we must estimate ψ , IV methods are best suited to treatment switches (to other trial treatment)
 - e.g. not for rescue treatments
- Targets the hypothetical estimand e.g. E[Y(1) Y(0)]
 - though Angrist, Imbens & Rubin (1996) showed in the case of 0/1 treatment that the target is better described as a principal stratum estimand

Rank-preserving structural failure time model (brief outline)

- Outcome: T_i = observed lifetime for individual *i*
- The RPSFTM relates T_i to the same individual's *potential lifetime in the absence of treatment* T_i(0) through a treatment effect ψ (Robins & Tsiatis 1991)

 $-T_i^{off}, T_i^{on} =$ follow-up times off and on treatment

- treatment increases the T_i^{on} part

- model: $T_i(0) = T_i^{off} + \exp(\psi) \times T_i^{on}$

- Interpretation: you have an assigned lifetime $T_i(0)$ which you use up $\exp(\psi)$ ("acceleration factor") times faster when you are on treatment
- Estimate ψ using the fact that $T_i(0)$ is balanced across randomised groups
- Finally compare the T_i in treated arm with the $T_i(0)$ in control arm (White et al, Stat Med 1999)

good treatment:

 $\exp(\psi) < 1$

Sunitinib overall survival with RPSFTM

with thanks to Xin Huang (Pfizer)

IPCW: idea (1)

- Inverse-Probability-of-[not]-Censoring Weighting
- "Exclude" approach: censor at treatment change
- But treatment changes occur to a selected group: e.g. treatment switches are common on disease progression
- We allow for this by weighting
 - weight by inverse probability of remaining on intended treatment, given history
 - requires time-updated covariates, e.g. whether progressed
 - modelling exercise to predict departing from intended treatment given time-updated covariates
 - requires departing from intended treatment to be uncertain

IPCW: idea (2)

- Underlying assumption: no unmeasured confounders
- We use
 - the participants who remain on intended treatment
 - to represent

the potential outcomes of participants who changed treatment, *if they had remained on intended treatment*

- Hence we are estimating a "hypothetical" estimand
 - effect if no-one changed treatment
- NB can handle all sorts of treatment changes

IPCW illustrated: control arm

Plan

- 1. Treatment changes
- 2. Estimands
- 3. Analyses
- 4. Designs

Design aspects

- Choose estimand at start of design process
 - or estimands
- If possible, minimise extent of treatment changes
- Choose suitable analysis
- Collect suitable data

Design aspects

Estimand	Analysis	Design requirement
Treatment policy	ITT	Define and record treatment changes (for description & imputation)
		Follow up regardless of treatment changes
Hypothetical	IPCW	No need to follow up after treatment changes
		Collect time-varying covariates that predict treatment changes and outcome
Hypothetical	IV	Define and record treatment changes (for analysis)
3		Follow up regardless of treatment changes

- Do we need to allow the control arm to start experimental treatment at progression?
 - if ultimately the experimental treatment is not funded because of uncertainty about its impact on overall survival, then we have stopped collecting data too soon
- I think there is an argument for a 2nd randomisation (start experimental treatment vs. continue control) in the control arm at progression
 - gains extra information about treatment effect
 - makes IPCW assumptions valid

Summary

- Treatment changes take many forms
- Some matter, some don't
- Need to be clear what question we are asking what is our estimand
- Need to design trial suitably for our estimand
- Need to analyse trial suitably for our estimand

Good recent reference: Hernán MA, Robins JM (2017) Per-Protocol Analyses of Pragmatic Trials. *NEJM* 377: 1391– 1398.