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Frequentist vs Flexible (Adaptive) Trials

Classical frequentist trials

• details of design and analysis must be prefixed in advance
(population, treatments, doses, main and secondary outcome

variable(s), analysis strategy, sample sizes,...)

• lack of flexibility to react to information from inside or outside
the trial

Medical Statistician:

one who will not accept that Columbus discovered America ....
because he said he was looking for India in the trial* plan.
(* A cross over trial). Senn, 1997, p 58
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Frequentist vs Flexible (Adaptive) Trials

Classical frequentist trials

• details of design and analysis must be prefixed in advance
(population, treatments, doses, main and secondary outcome

variable(s), analysis strategy, sample sizes,...)

• lack of flexibility to react to information from inside or outside
the trial

Flexible (adaptive) design

• allow for mid-trial design modifications based on all internal
and external information gathered at interim analyses without
compromising the type I error rate

• To control the type I error rate, the design modifications need
not be specified in advance.
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Pre-Specified Adaptive versus Fully Adaptive Designs

Pre-specified Adaptive Designs

The adaptation rule must be
completely pre-specified.

• Group sequential designs

• Blinded sample size
reassessment

• Rules for sample size
reassessment & treatment
selection

• (Bayesian) response adaptive
randomization

Schmitz ’93, Shun ’01, Stallard & Todd ’03,

Friede & Kieser, Hu & Rosenberger ’06,

Berry et al. ’10, ...

Fully Adaptive Designs

The adaptation rule needs not to be
(completely) specified

• Sample size reassessment

• Treatment arm selection

• Population enrichment

• Endpoint selection

Bauer ’89,Bauer & Köhne ’94, Proschan &

Hunsberger’95, Lehmacher & Wassmer ’99,

Cui et al. ’99, Müller & Schäfer ’04, Mehta

& Pocock ’11, ...
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Some History of Adaptive Designs

28 years ago Bauer: “Multistage Testing with Adaptive Designs”

22 years ago Proschan & Hunsberger: “Designed Extension of
Studies Based on Conditional Power”

10 years ago EMA Reflection Paper

7 years ago FDA Draft Guidance (Drugs and Biologics)

2 years ago FDA Draft Guidance (Devices, CDRH, CBER) -
finalized last year

Twenty-five years of confirmatory adaptive designs: opportunities and pitfalls

P. Bauer, F. Bretz, V. Dragalin, F. Koenig, and G. Wassmer.
Featured Article in Statistics in Medicine 35, 325-347, 2016.
http://dx.doi.org/10.1002/sim.6472 (Open Access)
With invited discussion by Hung, Wang and Lawrence; Mehta and Liu; Vollmar; Maurer
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What is an Adaptive Design?

A study design is called “adaptive” if statistical methodology
allows the modification of a design element (e.g. sample-size,
randomization ratio, number of treatment arms) at an interim
analysis with full control of the type I error.
EMA 2007

A study that includes a prospectively planned opportunity for
modification of one or more specified aspects of the study design
and hypotheses based on analysis of data (usually interim data)
from subjects in the study.
CBER, CDER FDA 2010

A clinical study design that allows for prospectively planned mod-
ifications based on accumulating study data without undermin-
ing the trial’s integrity and validity.
CBER, CDRH, FDA, 2016
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Minimal Requirements for Confirmatory Adaptive Trials

“Using an adaptive design implies that the
statistical methods control the pre-specified
type I error, that correct estimates and con-
fidence intervals for the treatment effect are
available, and that methods for the assess-
ment of homogeneity of results from different
stages are pre-planned.”
EMA reflection paper (2007)

“The chief concerns with these designs are
control of the study-wide Type I error rate,
minimization of the impact of any adaptation-
associated statistical (see section VII.B) or
operational bias on the estimates of treat-
ment effects, and the interpretability of trial
results.”
FDA Draft Guidance (2010)
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Where are we now?

• Do sponsors consider adaptive designs in the development
plans?

• Which type of adaptive designs are proposed?

• What are frequently identified problems?

• Which issues are still controversial?

9



European Regulatory Experience with Adaptive
Designs

10



Adaptive Designs in EMA Scientific Advice Procedures
Survey of Scientific Advice/Protocol Assistance Procedures (01/2007- 05/2012)

• Scientific Advice/Protocol Assistance procedures of EMA
Scientific Advice Working Party

• Search for Scientific Advice Letters containing terms such as,
adaptive design, flexible design, adaptive interim analysis, ...

• Exclusion of phase I trials

• 59 procedures identified that contained questions on clinical
trials with an adaptive designs

• May not include all procedures addressing adaptive designs
(e.g., if sponsors use different terminology).

• A. Elsäßer, J. Regnstrom, T. Vetter, F. Koenig, R. Hemmings, M. Greco,
M. Papaluca-Amati, and M. Posch.
Adaptive clinical trial designs for European marketing authorization: a
survey of scientific advice letters from the European Medicines Agency.
Trials 15, 383, (2014) (Open Access)
http://dx.doi.org/10.1186/1745-6215-15-383

11



Number of Procedures per Year (n=59)
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Types of Clinical Trials

• About 60% rare disease (prevalence of < 5/10, 000),
1/3 applied for orphan designation

• Indications: About 50% oncology

• About 90% phase III or seamless II/III studies. Additionally,
phase II or pediatric studies.

• ≈ 75% proposed as single pivotal trial

• Number of interim analyses:
1 ≈ 70%, 2 ≈ 20%, > 2 ≈ 5%.

• Primary Endpoint: time to event (≈ 50%), binary (≈ 30%),
continuous (≈ 20%).
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Types of Adaptations (n=59)
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What if adaptations and multiplicity issues were ignored ...

• Comparing k treatments against control:

• What is the most extreme inflation of the type I error rate using
naively a conventional fixed sample size test at level α at the end of
a study if we allow sample size reassessment (and selection) at
interim?

Maximum type 1 error inflation:

k = 1 k = 1 k = 2
nominal α balanced1 unbalanced2 unbalanced3

0.05 0.115 0.187 0.289
0.025 0.062 0.106 0.170
0.01 0.027 0.049 0.080

1 Proschan and Hunsberger 1995

2 Graf and Bauer 2011

3 Graf, Bauer and Koenig 2014
15



Overall Regulatory Response (n=59)
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Issues Raised (Years 2009-2012, n=41)
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Further Issues Identified in Adaptive Clinical Trial
Proposals

• Insufficient sample size for subgroup analyses

• The option for adaptations is not prospectively planned
(Post-hoc adaptive trial)

• Issues due to interim analyses (as in group sequential designs)
• Overrunning
• Feasibility of interim analyses because of large recruitment

rates or delayed endpoints.
• “Maturity” of survival data in interim analyses
• Leakage of interim information leading to “silent adaptations”,

not captured by the statistical methodology. They may result
in issues for the interpretability of results.
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Estimation

Usually, standard estimators, not accounting for the adaptations,
are proposed.

• In general, point estimates of adaptive designs will be biased.

• For specific scenarios, the bias can be quantified by
simulations.

• The size of the bias will vary, depending on
• the type of adaptation and specific adaptation rule,
• the actual treatment effect(s)
• nuisance parameters

• Adjusted confidence intervals

Interestingly:

The bias can be smaller for adaptive designs than for fixed sample
designs, e.g. multi-arm designs. See “Selection and Bias - Two
Hostile Brothers” Bauer et al. 2010
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Type I Error Control

Several approaches seen:

• Adaptive testing procedures (conditional error rate,
combination tests)

• “Promising zone” approach.

• Standard analysis not accounting for adaptations.

• Simulation methods to demonstrate type I error control
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Adaptive Two-Stage Designs based on Combination
Tests

21



Adaptive Two-Stage Combination Tests

• A trial is performed in two stages

• In an interim analysis the trial may be
• stopped for futility or efficacy or
• continued and possibly adapted (sample size, test statistics)

• Adaptation of the design of second stage
• adaptations depend on all (unblinded) interim data including

secondary and safety endpoints.
• the adaptation rule is not (completely) preplanned.

How to construct a test that controls the type I error?
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Adaptive Combination Tests (Bauer ’89, Bauer & Köhne ’94)

p

�1
�

�

Reject H0 Accept H0

0 1

First Stage

Stopping boundaries and combination functions have to be laid
down a priori!
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Adaptive Combination Tests (Bauer ’89, Bauer & Köhne ’94)

p

�1
�

�

Reject H0 Accept H0

0 1

Second Stage

C( , )p q

Reject H0
Accept H0

0 1
c

First Stage

Adaptation

Planning:

• Fix design (only) for Stage 1

• Fix combination function
C(p, q) and critical value c
e.g. C(p, q) = p · q

Stage 1:

• Compute p-value p from
Stage 1 data

• Fix design for Stage 2 based
on data from Stage 1

Stage 2:

• Compute p-value q form
Stage 2 data.

• Reject H0 iff C(p, q) ≤ c.
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Type I error control and combination functions

Type I error control

Type I error rate ≤ α if we choose critical value c such that

P[p ≤ αorC (p, q) ≤ c] = α

for independent and uniformly distributed p-values p and q.

• Fisher product test: C (p, q) = p · q
(Bauer 1989, Bauer & Köhne, 1994)

• Weighted inverse normal method:
C (p, q) = Φ(w1 Φ−1(p) + w2Φ−1(q))

(Lehmacher & Wassmer, 1999)

(Remark: Can use critical values of a group sequential trial with
interim information fraction w1).
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Clue of the Adaptive Test

• Do not pool the data of the stages, combine the stage-wise
p-values.

• Then the distribution of the combination function under the
null does not depend on design modifications

• Hence the adaptive test is still a test at the level α for the
modified design!

• Applicable also for multiple looks, multiple hypotheses, ...

• Adaptations can depend on all (unblinded) interim data
including secondary and safety endpoints.

• For a control of the type I error rate, one need not pre-specify
how the Stage 1 data determine the design of Stage 2.
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Numerical Example Product Test

One sample test at level α = 0.025 for the mean of (pre-planned)
40 normally distributed observations to test the hypotheses

H0 :µ = 0 against H ′ :µ > 0

• Product test α1 = 0.01,α0 = 1, c = 0.00326.

• First stage sample size n1 = 20 observations.

• First stage data: mean 3.7, sd 10.9, p = 0.0727 (t-test).

• Interim decision: p > α1 continue.

• Second stage: Choose sample size of n(2) = 30 observations.

• Second stage data: mean 3.2, sd 9.5, q = 0.0376 (t-test).

• Test decision: p · q = 0.00273 < c reject H0.
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Choice of α1 and n1

No early rejection α1 = 0

Interim analysis for adaptations and/or futility stopping, only.

• Is there enough information to perform adaptations? What is
the precision of effect estimates?

Positive early rejection boundary (α1 > 0)

• What is the probability of an early rejection under different
alternative hypotheses?

• Is the interim sample size large enough to obtain sufficient
safety data and data on secondary endpoints?

• Is it ethical to continue the trial although a large treatment
effect has been observed?

• Is it likely that the interim results after an early rejection are
convincing enough to stop the trial?
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The Issue of Stopping for Futility (Choice of α0)

Should futility stopping be considered when computing the type I
error rate?

• If futility stopping is considered, more liberal rejection
boundaries can be applied to control the type I error rate.

• While the type I error rate is controlled, this is due to the
assumption that one would have stopped if a futility boundary
had been crossed.

The “Inverse-Bonferroni test”
Toss a dice:

1-5: do not perform the
clinical trial.

6: Perform the trial at
level 6α.
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FDA Experience with Stopping for Futility

Lin et al, 2016. CBER Experience with Adaptive Design Clinical
Trials

• “One of the most useful adaptations in clinical trials is
consideration of a study termination for futility ...”

• “There have been various adaptive designs proposals ...
have attempted to borrow alpha from a binding futility
analysis, most often to increase the frequency or nominal
significance level of interim efficacy analyses.”

• “Because we have encountered multiple cases in which
supposedly binding futility boundaries have been crossed
and ignored, it has been our practise to ask sponsors to
evaluate type I error without accounting for any futility
analyses.”
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Clinical trials are usually more complex ...
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Multiplicity in Adaptive Clinical Trials

Multiplicity arises through

• multiple treatment groups

• multiple endpoints

• multiple subgroups

In Adaptive Clinical Trials, treatment groups, endpoints and
subgroups may be dropped or added in interim analyses while
controlling the Familywise Type I Error Rate in the strong sense.

Control of the familywise type I error rate in the strong sense:

The probability that any true null hypothesis is rejected is bounded
by α, regardles of which and how many null hypotheses are true.
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Adaptive Trials with Treatment Selection

C

B

D

A

Control

First Stage      Selection     Second Stage

• First stage investigates several doses.

• Second stage treatment(s) are selected based on first stage
data.

• Efficacy is demonstrated with data from both stages.
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Advantages of Treatment Selection Designs

• Treatment (dose) selection trial and confirmatory trial
incorporated into a single trial

• Saving of sample size
The first stage data is used in the final test decision.

• Saving of time
Preparation time for a second trial is spared.
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Case Study: Interim Dose Selection

• Seamless phase II/III designs for two pivotal placebo controlled trials
of a new chemical entity for the treatment of diabetic nephropathy

• Objectives:
• Demonstrate superiority in a surrogate marker of kidney disease

progression
• Select two of three initially tested dose strengths based on an

interim analysis of the benefit/risk ratio in both trials.

• Pre-planned interim analyses to be performed by an IDMC after
60% of 420 patients had completed 8 weeks of treatment in the first
trial.

• Dose selection based on data from both trials using pre-determined
criteria for the primary efficacy and safety parameters.

• Proposed type I error rate control: Bonferroni adjustment to control
the familywise error rate adjusting the level for two comparisons
only.
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Case Study: SAWP/CHMP Reply

• The statistical testing procedure was not endorsed, as it was
not supposed to control the familywise type I error rate for
the three hypotheses initially considered.

• Instead, adaptive combination tests based on the closure
principle and adaptive Dunnett test procedures based on the
conditional error rate are adequate methods to control the
type I error rate.

• The advantage of the proposed design with respect to power
should be evaluated as it maybe small.

• Safety evaluation may not be possible to support dose
selection at the proposed time of interim analysis.
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Issues to address

• Control of the type I error rate Even if only one experimental arm

(and the control) is selected, a multiplicity correction is required.

EMA Reflection Paper, 2007, FDA Draft Guidance, 2010

• Interim selection of treatments may introduce bias
If the treatment with the largest interim effect size is chosen, the

effect estimates will be biased.

• Interim data maybe highly variable and lead to selection of the
“wrong” treatment arm.

• Unblinding of data at the interim analysis
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Control of the Type I error rate

Several procedures have been proposed:

• Methods based on completely predefined adaptation rules
• Multiplicity adjusted critical values are determined by

simulation or numerical integration

Thall et al. ’88, ’89, Stallard and Todd ’03, Sampson and Sill ’05, Magirr et al. ’12 ...

• Combine Closure Principle and Adaptive Designs
• Perform adaptive tests for intersection hypotheses using

Bauer and Kieser ’99, Kieser et al. ’99, Hommel 2001, Posch et al. ’05, König et al. ’08,

Bretz et al. ’09, Posch et al. ’11
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Adaptive Designs based on the closure principle

• Selection of treatments may depend on all data collected (also
safety data, secondary endpoints)

• Sample sizes may be adapted.

• In principle, pre-specification of the adaptation rules is not
required to control the multiple Type I error rate.

• However, the type of adaptations and the anticipated
adaptation rules should be pre-specified

• Number of adaptations should be limited
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Dose selection and efficacy testing

• Parallel group design with k = 2 dose groups and a control
group (i.e., in total three parallel groups).

• Testing the one sided hypotheses

Dose 1 vs control: H0,1 : µ1 ≤ µ0 vs. H1,1 : µ1 > µ0

Dose 2 vs control: H0,2 : µ2 ≤ µ0 vs. H1,2 : µ2 > µ0
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Dose selection and efficacy testing

• After Stage 1 we decide either to
• go into Stage 2 with BOTH doses or
• go into Stage 2 with only ONE dose.

• Selection rule unknown before end of Stage 1.

• Choice of sample sizes for Stage 2 depends on selected
dose(s) and observed efficiency.

• Regulatory bodies ask for a level α = 0.025 test of the
intersection hypothesis

H0,1 ∩ H0,2 : µ1, µ2 ≤ µ0
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Flexible Closed Test (Bauer & Kieser 1999, Hommel 2001)

• Use flexible two stage test for H0,1 ∩ H0,2,

e.g. fix a combination test C (p, q) at level α.

• At Stage 1 use a multiplicity adjusted p-value for p

e.g. p-value of Šidak test

p = p12 = 1− [1−min(p1, p2)]2

• At Stage 2 use the p-value for the selected doses(s):

– If we select only one, e.g. dose 1, we use q = q1

– If we select both, we use e.g. Šidak test

q = q12 = 1− [1−min(q1, q2)]2

• In all cases reject H0,1 ∩ H0,2 iff C (p, q) ≤ c .
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Test
H0,1 ∩ H0,2

at level α

Test
H0,1

at level α

Test
H0,2

at level α

H0,1 and H0,2
are accepted.

No 
Rejection

Rejection

The Closed
Testing Principle
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Reject
H0,1 ∩ H0,2 iff

C(p12,q)<c

Reject
H0,1 iff

C(p1,q1)<c

Reject
H0,2 iff

C(p2,q2)<c

H0,1 and H0,2
are accepted.

No 
Rejection

Rejection

Adaptive Closed
Testing Principle
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Reject
H0,1 ∩ H0,2 iff
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Reject
H0,1 iff

C(p1,q1)<c

Reject
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Reject
H0,1 ∩ H0,2 iff
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Reject
H0,1 iff

C(p1,q1)<c

H0,1 and H0,2
are accepted.

No 
Rejection

Rejection

Adaptive Closed
Testing Principle

Selecting
dose 1

44



Power considerations

How to define the “power” if multiple hypotheses are tested in an
adaptive trial?

• Probability to reject all hypotheses.

• Probability to reject all selected hypotheses.

• Average power for the selected hypotheses.

• The probability for a particular treatment to be selected and
the corresponding hypothesis to be rejected.

• Probability to select and reject any hypotheses.
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Simulation Study

• Classical approach: Fixed Sample Design with Dunnett Test

• Adaptive design: Adaptive Closed Dunnett Test

- Two treatments versus control

- Normal responses (σ = 1)

- Total n such that power for sin-
gle treatment-control comparison
is 80% for µi − µ0 = 0.5

- Interim analysis at n1 = n/2 with
selection of ”best” treatment

- mean diff. for treatment 2:

µ2 − µ0 = 0.5
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Generalizations

• More than two treatments/hypotheses

• More than two stages

• Early Stopping

• Other adaptations (like subgroup selection in adaptive
enrichment designs)
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Sources for Potential Inflation of Type I Error

Sources of type I error inflation Means for error control

Early rejection of null hypotheses at
interim analyses

Group sequential plans

Adaptation of design features and
combination of information across
trial stages

Combination of p-values
e.g. inverse normal method,
Fisher’s combination test,
conditional error function

Multiple hypotheses testing
e.g. with adaptive selection of hy-
potheses at interim analyses

Multiple testing methodology
e.g. closed test procedures

Maurer et al. 2010

All three approaches can be combined
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Conclusions
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Conclusions (I)

• General inferences about regulatory standards and preferences
is difficult

• The assessment depends on the overall quality and the general
context:

• overall drug development program,
• type of medicinal product
• indication
• ....
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Conclusions (II)

Questions that should generally be addressed during planning and
assessment

1 Is there a good rationale? Have alternative, more standard
trial designs been considered?

2 Does the proposal fit well in the context of the development
program and the data that will be available for the marketing
authorization application?

3 Can the proposal be implemented without important damage
to trial integrity?

4 Is the type I error rate controlled?

5 Has the potential bias of treatment effect estimates been
evaluated?

6 Is the proposal practical and feasible?
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Conclusions (III)

• Adaptive designs seem well accepted if properly planned and
implemented

• A range of increasingly complex adaptive designs are
proposed, the majority in rare diseases

• Surprisingly, still a lack of methodological knowledge
• how to achieve type I error control
• how to assess the efficiency of the design (timing of interim

analysis, adaptation rules, power)

• Who should be decide on adaptations at interim, (DMC?,
sponsor?, ...)

• Group sequential designs developed in the 70s are now well
established - do we still have to wait one decade until the
adaptive methodology is common knowledge?

52



Adaptive Designs

• allow for mid-trial learning and adaptations while strictly
controlling the (multiple) type I error rate.

• address different sources of potential multiplicity issues
prospectively

• can be more efficient than classical approaches

Writing ”online” protocol amendments only if design modification
are performed in an ongoing trial will not control the type I error
rate at all! Neither post-hoc analysis.
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Backup Slides for Panel Discussion
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Justification of the Adaptive Design

EMA Reflection paper:
”Adaptive designs would be best utilised as a tool for planning clinical

trials in areas where it is necessary to cope with difficult experimental

situations.“

• Is there a need for an adaptive trial?

• Have less complex design options been considered as well and
compared to the adaptive design?

• Is the number of interim analysis justified? More than one
interim analysis maybe justified in long term clinical trials.

• Is there a need for unblinding?

• Potential advantages of the adaptive design need to be
weighed against potential biases and additional complexities.
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Simulation Based Procedures for Type I Error
Control
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Clinical Trial Simulations
”What, if“-scenarios: How do designs and assumptions affect the performance of trials?

• Controllable: doses, regimes, sampling time, study duration,
interim analyses, adaptations, ...

• Uncontrollable: drug characteristics (PK/PD), disease
progression, drop-outs, unscheduled adaptations: ”dealing
with the unexpected“ as dropping of an unsafe dose, ...

Simulate operating characteristics for specific trial designs :

• Probabilities of ”success“ (evaluate different power definitions)

• Probabilities for early trial termination (due to safety, efficacy or
futility)

• Probabilities to select ”best“ dose during clinical development

• Impact on effect estimates (bias?) and MSE

• Expected sample sizes

• Demonstration of Type I error rate control
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Simulation Based Procedures for Type I Error Control

Type I error estimation by simulation

The adaptive trial is simulated a large number of times under the
null hypothesis. The fraction of runs with a rejection of the null
hypothesis is calculated.

Straight forward to implement if the trial has

• a single point null hypothesis,

• a fully pre-specified adaptation rule depending on the primary
endpoint only,

• no nuisance parameters,

• an adaptation rule that is not too complex such that large
number of simulation runs can be performed.
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Number of Simulation Runs
Posch et al., 2011; Grieve, 2011

• Precise estimates of the Type I error rate, require large
numbers of simulations

• How large? For small sample numbers, a selective choice of
seed may lead to biased estimates.

Table: Expected number of seeds to obtain one simulated
Type I error rate below 0.025 when the actual error rate is
0.026.

] of runs Expected ] of seeds

104 4
105 43
106 8× 109
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Nuisance Parameters and Simulation Studies

It is not sufficient to investigate the global null hypotheses but
type I error control has to be shown for

• the global and all intersection null hypotheses

• for all possible (nuisance) parameter values

• all considered adaptation options

For example, one needs to consider

• in multi-armed trials: all combinations of effective and
non-effective arms and effect sizes

• in enrichment designs: all combinations of treatment effects in
the subgroup and overall population

• with adaptation rules depending on
surrogate/safety/secondary endpoints: all effect sizes in these
endpoints
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Example: Response Adaptive Design
Comparison of rates, n=30, comparison of 6 test statistics for comparison of rates

Simulated Type I error (10.000 runs)
Gu & Lee, 2010, Table 11
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Challenges of Type I Error Control with Simulations

• Can one sufficiently explore the type I error rate in adaptive
clinical trials (relying on an abundance of parameters and
assumptions) by simulations?

• Has the worst case scenario with respect to the type I error
really been identified?

• Have only scenarios with favourable assumptions been
investigated and presented by the sponsor?

• How can one convincingly communicate the results of the very
extensive simulation work required?
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Summary – Simulations

• In principle, clinical trial simulation is a valid tool to study
operating characteristics of clinical trials.

• However, often it may not be feasible to cover the whole
relevant parameter space to show FWER in the strong sense
by simulations.

• Statistical methods for which type I error control can be
demonstrated under less restrictive assumptions (e.g.,
combination tests, conditional error rate based tests) are
preferred.

• Still simulations are valuable to assess the power of adaptive
tests.

• To investigate bias and MSE of point estimates, simulation
studies are proper tools. Additionally, worst case scenarios for
the bias are of interest.
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Operational Challenges of Adaptive Designs
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Further Operational Challenges of Adaptive Trials (I)

All limitations of group sequential trials apply

• Interim analyses require larger logistic efforts (decision flow;
group of people involved in the decision process; high quality
data must be provided in relatively short time

• Endpoint (longterm clinical versus surrogacy) - mature
enough for interim decisions

• Overrunning / Recruitment stop (ratio recruitment speed
versus time until endpoint is observed)

• Need for good data management and monitoring (electronic
data capture) to have interim analysis with current data
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Further Operational Challenges of Adaptive Trials (II)

Specific challenges in adaptive designs

• Decision Making on adaptations (who, DMC?, experienced members,
information flow, sponsor involvement, firewalls ...)

• How much pre-specification is needed?

• Which content should be included in the study protocol, DMC-charta, ...?

• Will adaptations affect other documents (e.g, informed consent if
randomisation ratio is changed, doses dropped, ... )

• Immediate implementation of adaptations (e.g., change of
randomisiation, population, doses, ..)

• Logistics of drug supply

• Communication of adaptations to health authorities (e.g., ethics
committee)

• Un-intended adaptations/modifications to the trial (e.g., change in
patient populations or Placebo effect because arm has been dropped)
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Challenges in Adaptive Survival Trials
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Case Study Survival: Sample Size Reassessment

• Open-label, two-armed, single pivotal phase III study for an
anticancer drug in a rare disease

• Objective: To demonstrate superiority of the drug over a standard
treatment for the primary endpoint of overall survival.

• Pre-planned adaptive design with two interim analyses (independent
data monitoring committee, IDMC) with Haybittle-Peto stopping
boundaries

• Interim analyses at 50% and 80% of events, given a fixed overall
sample size

• At the second interim analysis, possibility to increase the number of
events by 20% if the interim results show a promising but not
overwhelming trend (conditional power arguments).

• No increase of the sample size.

• Proposed analysis: inverse normal method

70



Case Study Survival: SAWP/CHMP Reply

• Design is acceptable from a statistical point of view if the type I
error rate is controlled and operational bias is avoided.

• No agreement to the early rejection boundary in the first interim
(concerns over the totality of evidence that would be available for a
benefit-risk assessment) but agreement to futility stopping.

• Discussion whether primary analysis should be based on the
standard fixed sample test statistics. Inverse normal test as
sensitivity analysis:

• If sample size is increased only if a promising interim effect is
observed, the fixed sample test controls the type I error rate under
certain assumptions (”Promising Zone Approach“).

• The inverse normal method down-weights the second stage
treatment effect if the number of events is increased. This is
undesirable if the survival curves initially separate but become closer
at later time points.

• A complexity (not explicitly discussed), is the potential inflation of
the type I error rate if adaptations are based on information of
patients censored at the interim analysis.
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Adaptive Tests for Survival Data

• The combination test and the conditional error approach can
be extended to survival data and the log-rank test
(independent increments property).

Wassmer 2006, Schaefer & Mueller 2001

• Stagewise p-values are calculated from the events occuring in
each stage.

• Caveat: This may lead to biased tests if adaptations are based
on covariate information or secondary endpoints of first stage
patients censored at the time of the interim analysis. E.g.,
adaptations based on PFS when the primary endpoint is OS.
Bauer & Posch, 2001
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Type I Error Control in Adaptive Survival Studies

Patients recruited in the first stage maybe still under risk in the
second stage.

• Tests based on the independent increments property of the
log-rank statistics are in general not valid if adaptations
depend on secondary endpoints.

Posch & Bauer, 2004

• Test procedures where the follow-up time from first stage
patients is fixed control the type I error rate, but do not
include all events in the test statistics if the trial is extended.

Jenkins et al. ’11, Irle & Schäfer, ’12

• Conservative tests based on all observed data are typically
strictly conservative. Magirr et al. 2016
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Sources for Potential Inflation of Type I Error

Sources of type I error inflation Means for error control

Early rejection of null hypotheses at in-
terim analyses

Group sequential plans

Adaptation of design features and com-
bination of information across trial
stages

Combination of p-values
e.g. inverse normal method,
Fisher’s combination test,
conditional error function

Multiple hypotheses testing
e.g. with adaptive selection of hypothe-
ses at interim analyses

Multiple testing methodology
e.g. closed test procedures

Maurer et al. 2010

All three approaches can be combined
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