

Interim analysis and treatment selection in time-to-event randomized trials in rare diseases on a long-term horizon

<u>Mohamed Amine BAYAR</u>^{1,2}, Gwénaël LE TEUFF^{1,2}, Marie-Cécile LE DELEY^{1,2,3}, Stefan MICHIELS^{1,2}

November 9, 2017 - Statistical methods and designs in clinical oncology - Symposium of the ONCOSTAT team

¹Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France ²CESP - UPS - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France ³Unité de Méthodologie et Biostatistique, Centre Oscar Lambret, Lille, France

- Most cancers in children are rare
- + \approx 20% of cancers in adults are rare
- Precision medicine \Rightarrow Many common cancers in adults become a set of rare cancers
- \Rightarrow Scarce resources for clinical research

Large randomized clinical trials (RCT) with standard one-sided 2.5% α -level and 80% power for a reasonable effect size often no longer feasible (Parmar et al., 2016)

Previous work (Bayar et al., 2016)

- Consider a trial as part of **a series of two-arm RCTs** rather than in isolation
- Assess benefits and risks on a long period
- Search for the best compromise between evidence criteria and sample size to achieve the greatest therapeutic gain

Conclusion:

Performing a series of small trials with relaxed α -levels leads, on average, to larger survival benefits over a long research horizon compared with larger trials with a typical 2.5% one-sided α -level

Previous work (Bayar et al., 2016)

- Consider a trial as part of **a series of two-arm RCTs** rather than in isolation
- Assess benefits and risks on a long period
- Search for the best compromise between evidence criteria and sample size to achieve the greatest therapeutic gain

Conclusion:

Performing a series of small trials with relaxed α -levels leads, on average, to larger survival benefits over a long research horizon compared with larger trials with a typical 2.5% one-sided α -level

- 1. Design each trial within the series as a two-arm RCT with an interim analysis (IA)
- 2. Design each trial within the series as a two-stage three-arm RCT with treatment selection at interim
- 3. Compare the performance of the two previous series designs between them, and with other more traditional designs

Basic simulation Model

- **Succession** of *K* two-arm RCTs over 15 years
- Experimental arm E vs. control arm C
- Time-to-event endpoint One-sided log-rank Test
- Treatment selected after each trial becomes the control of the next trial
- Number of patients for each trial within the series computed with the current baseline selected from the previous trial (Kim and Tsiatis, 1990)

Assumptions

- Uniform accrual
- Exponential distribution of survival times $(\lambda_k^c, \lambda_k^E)$, for each trial $k, k \in [1, K]$ and K depends on the course of the series
- No patient lost to follow-up (FU)
- Fixed FU time

Characteristics of the underlying disease

- Accrual rate: 50, 100, or 200 patients/year
- Hazard rate of the control arm of the first trial of the series $\lambda_1^{\rm C}$

Survival	λ_1^C	Follow-up
median survival of 6 months	2 log(2)	6 months
median survival of 1 year	log(2)	1 year
median survival of 2 years	$\frac{\log(2)}{2}$	2 years
2-year survival rate of 75%		2 years

Trials within the same series are designed to achieve the same power (80% or 90%) for the same expected \mathcal{HR} of 0.5, 0.6 or 0.75

Characteristics of the underlying disease

- Accrual rate: 50, 100, or 200 patients/year
- Hazard rate of the control arm of the first trial of the series $\lambda_1^{\rm C}$

Survival	λ_1^C	Follow-up
median survival of 6 months	2 log(2)	6 months
median survival of 1 year	log(2)	1 year
median survival of 2 years	$\frac{\log(2)}{2}$	2 years
2-year survival rate of 75%	$\frac{\log(4)-\log(3)}{2}$	2 years

Trials within the same series are designed to achieve the same power (80% or 90%) for the same expected \mathcal{HR} of 0.5, 0.6 or 0.75

Characteristics of the underlying disease

- Accrual rate: 50, 100, or 200 patients/year
- Hazard rate of the control arm of the first trial of the series $\lambda_1^{\rm C}$

Survival	λ_1^C	Follow-up
median survival of 6 months	2 log(2)	6 months
median survival of 1 year	log(2)	1 year
median survival of 2 years	$\frac{\log(2)}{2}$	2 years
2-year survival rate of 75%	$\frac{\log(4) - \log(3)}{2}$	2 years

Trials within the same series are designed to achieve the same power (80% or 90%) for the same expected \mathcal{HR} of 0.5, 0.6 or 0.75

Characteristics of the underlying disease

- Accrual rate: 50, 100, or 200 patients/year
- Hazard rate of the control arm of the first trial of the series $\lambda_1^{\rm C}$

Survival	$\lambda_{\rm 1}^{\rm C}$	Follow-up
median survival of 6 months	2 log(2)	6 months
median survival of 1 year	log(2)	1 year
median survival of 2 years		2 years
2-year survival rate of 75%		2 years

Trials within the same series are designed to achieve the same power (80% or 90%) for the same expected \mathcal{HR} of 0.5, 0.6 or 0.75

Hypotheses of how treatments improve over time: future treatment effects

Relative characterization Hazard Ratio

$\mathbb{E}[\mathcal{HR}]$	$\mathbb{P}[\mathcal{HR} \leqslant 0.5]$
0.925	0.02
0.950	0.02
0.950	0.01
1.000	0.01

- Historical distribution derived from the meta-analysis of 698 RCTs on > 200 000 patients (Djulbegovic et al., 2012)
- Other distributions ± optimistic or pessimistic

Hypotheses of how treatments improve over time: future treatment effects

Relative characterization Hazard Ratio

$\mathbb{E}[\mathcal{HR}]$	$\mathbb{P}[\mathcal{HR} \leqslant 0.5]$
0.925	0.02
0.950	0.02
0.950	0.01
1.000	0.01

- Historical distribution derived from the meta-analysis of 698 RCTs on > 200 000 patients (Djulbegovic et al., 2012)
- Other distributions ± optimistic or pessimistic

Hypotheses of how treatments improve over time: future treatment effects

Relative characterization Hazard Ratio

$\mathbb{E}[\mathcal{HR}]$	$\mathbb{P}[\mathcal{HR} \leqslant 0.5]$
0.925	0.02
0.950	0.02
0.950	0.01
1.000	0.01

Absolute characterization Hazard Rate $\lambda^{E}(t)$ Hazard rate of the control arm of the first trial of the series $\lambda_{1}^{E} = \log(2)$

288 possible combinations of simulation parameters

- 3 accrual rates
- 4 baseline survivals
- 4 hypotheses of how treatments improve over time
- + 2 powers to be achieved for 3 expected $\mathcal{HR}s$

At the end of the 15-year research period

Total survival benefit

$$\frac{1}{\mathcal{HR}_{series}} - 1 = \frac{\lambda_{First\ trial}^{Control}}{\lambda_{Last\ trial}^{Selected}} - 1$$

Example

For a series of RCTs,

At baseline, median survival = 12 months $\Rightarrow \lambda_{First\ trial}^{Control} = 0.69$ After 15 year, $\lambda_{Last\ trial}^{Selected} = 0.46 \Rightarrow$ median survival = 18 months $\mathcal{HR}_{series} = 0.67 \Leftrightarrow$ Total survival benefit = 50%

10 000 repetitions of the 15-year research period **Expected total survival benefit (Gain)**

$$\mathbb{E}\left[rac{\lambda_{ extsf{First trial}}^{ extsf{Control}}}{\lambda_{ extsf{Last trial}}^{ extsf{Selected}}}-1
ight]$$

Probability of a detrimental effect (Risk)

Probability that the event rate associated with the treatment selected at the end of the 15 years is worse than the baseline event rate

$$\mathbb{P}\Big[\lambda_{ ext{Last trial}}^{ ext{Selected}} > \lambda_{ ext{First trial}}^{ ext{Control}}\Big]$$

IA performed when 1/2 of the required events are expected to be attained

- Wieand stopping rule for futility (Wieand et al., 1994) $\widehat{HR} \ge 1 \Rightarrow$ stop the trial for futility
- OBF β -spending stopping rule for futility (O'Brien and Fleming, 1979)
- OBF α -spending stopping rule for efficacy
- Combining the latter two

Series of two-stage three-arm RCTs with treatment selection at interim (Posch et al., 2005)

At the first stage

2 experimental treatments $J_1 = \{1, 2\}$ are compared to the control and the best is selected for the second stage

At the second stage

Selected treatment compared to the control, combining data from both stages at the multiple level α

- Closed testing procedure for multiple testing
- · Simes test for intersection hypotheses
- Weighted inverse normal combination function for stagewise p-values combination

Series of 2-arm trials with interim analysis

Interim analysis

- No interim analysis
- Wieand stopping rule for futility
- OBF β -spending stopping rule for futility
- OBF α -spending stopping rule for efficacy
- Combining the latter two

One-sided α-level: 0.025, 0.05, 0.1, 0.2 Series of 3-arm trials with selection at interim

First stage threshold: 0.05, 0.1, 0.15, 0.2

Second stage α-level: 0.025, 0.05, 0.1, 0.2

Results

Accrual rate = 50 patients/year Baseline median survival = 1 year Historical distribution of treatment effects 90% power for an expected \mathcal{HR} of 0.6

Results - Inclusion of an interim analysis

Accrual rate = 50 patients/year Baseline median survival = 1 year Historical distribution of treatment effects 90% power for an expected \mathcal{HR} of 0.6

Results - Inclusion of an interim analysis

Accrual rate = 50 patients/year Different baseline hazards rates

Historical distribution of treatment effects

90% power for an expected \mathcal{HR} of 0.6

Median survival of 1 year

2-year survival rate of 75%

Results - Inclusion of an interim analysis

Results - Designs comparison

Accrual rate = 50 patients/year Baseline median survival = 1 year Historical distribution of treatment effects 90% power for an expected \mathcal{HR} of 0.6

Series of 3-arm RCTs with selection at interim

Optimal design	Traditional design	Series of 2-arm RCTs with no interim analysis	Series of 2-arm RCTs with interim analysis	Series of 3-arm RCTs with selection at interim
lpha-level	0.025	0.1	0.1	0.1
Interim analysis	None	None	Wieand	threshold = 0.2
Number of trial	3.0	4.0	4.7	4.3
Gain	27.0%	36.1%	39.6%	42.7%
Risk	0.33%	1.03%	0.91%	0.87%

Optimal design	Traditional design			
lpha-level Interim analysis	0.025 None			
Number of trial Gain Risk	3.0 27.0% 0.33%	4.0 36.1% 1.03%	4.7 39.6% 0.91%	4.3 42.7% 0.87%

Optimal design	Traditional design	Series of 2-arm RCTs with no interim analysis	Series of 2-arm RCTs with interim analysis	Series of 3-arm RCTs with selection at interim
lpha-level Interim analysis	0.025 None	0.1 None		
Number of trial Gain Risk	3.0 27.0% 0.33%	4.0 36.1% 1.03%	4.7 39.6% 0.91%	4.3 42.7% 0.87%

Optimal design	Traditional design	Series of 2-arm RCTs with no interim analysis	Series of 2-arm RCTs with interim analysis	Series of 3-arm RCTs with selection at interim
lpha-level	0.025	0.1	0.1	
Interim analysis	None	None	Wieand	
Number of trial	3.0	4.0	4.7	4.3
Gain	27.0%	36.1%	39.6%	42.7%
Risk	0.33%	1.03%	0.91%	0.87%

Optimal design	Traditional design	Series of 2-arm RCTs with no interim analysis	Series of 2-arm RCTs with interim analysis	Series of 3-arm RCTs with selection at interim
lpha-level	0.025	0.1	0.1	0.1
Interim analysis	None	None	Wieand	threshold = 0.2
Number of trial	3.0	4.0	4.7	4.3
Gain	27.0%	36.1%	39.6%	42.7%
Risk	0.33%	1.03%	0.91%	0.87%

For the 288 possible combinations of simulation parameters

Series of 2-arm RCTs with interim analysis

	One-sided α -level				
Interim Analysis	0.025	0.05	0.1	0.2	
No interim analysis	0.0%	0.3%	1.4%	1.0%	2.8%
Wieand stopping rule for futility	5.6%	4.5%	4.5%	25.8%	40.4%
OBF β -spending stopping rule for futility	5.2%	5.9%	2.1%	2.4%	15.7%
OBF α – spending stopping rule for efficacy	0.3%	2.1%	0.7%	1.0%	4.2%
Combining the latter two	5.2%	11.5%	4.5%	15.7%	36.9%
	16.4%	24.4%	13.2%	46.0%	Total

Series of 3-arm RCTs with selection at interim

		Second stage α -level			
First stage threshold	0.025	0.05	0.1	0.2	
0.05	0.4%	0.0%	0.7%	0.7%	1.8%
0.1	3.7%	0.7%	1.1%	0.4%	5.9%
0.15	10.7%	8.1%	5.1%	2.2%	26.1%
0.2	4.4%	6.6%	12.9%	42.3%	66.2%
	19.1%	15.4%	19.9%	45.6%	Total

Comparison of the performance of optimal designs for the 288 possible combinations of simulation parameters

For the same number of trials, a series of 3-arm RCTs test twice more experimental treatments than a series of 2-arm RCTs

Even when including interim analysis or two-stage design with treatment selection at interim, we still recommend to relax α -level

Our recommendation is only valid when considering a series of trials run over a relatively long research horizon and when the supply of new treatments is large

References

- Bayar, M. A., Le Teuff, G., Michiels, S., Sargent, D. J., and Le Deley, M.-C. (2016). New insights into the evaluation of randomized controlled trials for rare diseases over a long-term research horizon: a simulation study. *Statistics in medicine*, 35(19):3245–3258.
- Djulbegovic, B., Kumar, A., Glasziou, P. P., Perera, R., Reljic, T., Dent, L., Raftery, J., Johansen, M., Di Tanna, G. L., Miladinovic, B., et al. (2012). New treatments compared to established treatments in randomized trials. *The Cochrane Library*.
- Dmitrienko, A., Tamhane, A. C., and Bretz, F. (2009). Multiple testing problems in pharmaceutical statistics. CRC Press.
- Kim, K. and Tsiatis, A. A. (1990). Study duration for clinical trials with survival response and early stopping rule. *Biometrics*, pages 81–92.
- O'Brien, P. C. and Fleming, T. R. (1979). A multiple testing procedure for clinical trials. *Biometrics*, pages 549–556.
- Parmar, M. K., Sydes, M. R., and Morris, T. P. (2016). How do you design randomised trials for smaller populations? a framework. *BMC medicine*, 14(1):183.
- Posch, M., Koenig, F., Branson, M., Brannath, W., Dunger-Baldauf, C., and Bauer, P. (2005). Testing and estimation in flexible group sequential designs with adaptive treatment selection. *Statistics in medicine*, 24(24):3697–3714.
- Wieand, S., Schroeder, G., and O'Fallon, J. R. (1994). Stopping when the experimental regimen does not appear to help. *Statistics in medicine*, 13(13-14):1453-1458.

Q & A

Please, send any additional questions or comments to: Mohamedamine.BAYAR@gustaveroussy.fr

Hypotheses of how treatments improve over time : future treatment effects

Relative characterization Hazard Ratio

$\mathbb{E}[\mathcal{HR}]$	$\mathbb{P}[\mathcal{HR} \leqslant 0.5]$
0.925	0.02
0.950	0.02
0.950	0.01
1.000	0.01

Absolute characterization Hazard Rate

$$egin{aligned} \lambda^{\textit{E}}(t) &\sim \textit{log}\mathcal{N}\left(\mu(t), \sigma^{2}
ight) \ \mu(t) &= a imes t + b \end{aligned}$$

 $\mathbb{E}[\lambda^{E}(t)] = e^{\mu(t) + \frac{1}{2}\sigma^{2}}$ $\mathbb{SD}[\lambda^{E}(t)] = e^{\mu(t) + \frac{1}{2}\sigma^{2}}\sqrt{e^{\sigma^{2}} - 1}$

Hypotheses of how treatments improve over time : future treatment effects

Relative characterization Hazard Ratio

$\mathbb{E}[\mathcal{HR}]$	$\mathbb{P}[\mathcal{HR} \leqslant 0.5]$
0.925	0.02
0.950	0.02
0.950	0.01
1.000	0.01

Absolute characterization Hazard Rate

Results - Sensitivity analysis

Accrual rate = 50, 100, 200 patients/year Baseline median survival = 1 year Historical distribution of treatment effects

90% power for an expected \mathcal{HR} of 0.6

Comparison to a disease with 1-year median survival - Scenario 2

Comparison to a disease with 2-year median survival - Scenario 3

