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Context

• Most cancers in children are rare
• ≈ 20% of cancers in adults are rare
• Precision medicine⇒ Many common cancers in

adults become a set of rare cancers

⇒ Scarce resources for clinical research

Large randomized clinical trials (RCT) with standard
one-sided 2.5% α-level and 80% power for a reasonable
e�ect size o�en no longer feasible (Parmar et al., 2016)
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Previous work (Bayar et al., 2016)

• Consider a trial as part of a series of two-arm RCTs
rather than in isolation

• Assess bene�ts and risks on a long period
• Search for the best compromise between evidence
criteria and sample size to achieve the greatest
therapeutic gain

Conclusion:

Performing a series of small trials with relaxed
α-levels leads, on average, to larger survival bene�ts
over a long research horizon compared with larger
trials with a typical 2.5% one-sided α-level
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Current objective

1. Design each trial within the series as a two-arm RCT
with an interim analysis (IA)

2. Design each trial within the series as a two-stage
three-arm RCT with treatment selection at interim

3. Compare the performance of the two previous series
designs between them, and with other more
traditional designs

4



Simulation framework

Basic simulation Model

• Succession of K two-arm RCTs over 15 years
• Experimental arm E vs. control arm C
• Time-to-event endpoint - One-sided log-rank Test
• Treatment selected a�er each trial becomes the
control of the next trial

• Number of patients for each trial within the series
computed with the current baseline selected from
the previous trial (Kim and Tsiatis, 1990)
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Simulation framework

Assumptions

• Uniform accrual
• Exponential distribution of survival times (λCk,λEk), for

each trial k, k ∈ [1,K] and K depends on the course
of the series

• No patient lost to follow-up (FU)
• Fixed FU time
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Simulation parameters

Characteristics of the underlying disease
• Accrual rate: 50, 100, or 200 patients/year
• Hazard rate of the control arm of the �rst trial of the

series λC1
Survival λC1 Follow-up

median survival of 6 months 2 log(2) 6 months
median survival of 1 year log(2) 1 year
median survival of 2 years log(2)

2 2 years
2-year survival rate of 75% log(4)−log(3)

2 2 years

Trials within the same series are designed to achieve
the same power (80% or 90%) for the same expected
HR of 0.5, 0.6 or 0.75 7
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Simulation parameters

Hypotheses of how treatments improve over time:
future treatment e�ects

Relative characterization
Hazard Ratio

E[HR] P[HR 6 0.5]

0.925 0.02

0.950 0.02

0.950 0.01

1.000 0.01

• Historical distribution
derived from the
meta-analysis of 698
RCTs on > 200 000
patients (Djulbegovic
et al., 2012)

• Other distributions ±
optimistic or
pessimistic
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Simulation parameters

Hypotheses of how treatments improve over time:
future treatment e�ects

Relative characterization
Hazard Ratio

E[HR] P[HR 6 0.5]

0.925 0.02

0.950 0.02

0.950 0.01

1.000 0.01

Absolute characterization
Hazard Rate λE(t)
Hazard rate of the control arm of the �rst
trial of the series λC1 = log(2)
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Simulation parameters

288 possible combinations of simulation parameters

• 3 accrual rates
• 4 baseline survivals
• 4 hypotheses of how treatments improve over time
• 2 powers to be achieved for 3 expected HRs
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Performance metrics

At the end of the 15-year research period

Total survival bene�t
1

HRseries
− 1 =

λControlFirst trial
λSelectedLast trial

− 1

Example
For a series of RCTs,

At baseline, median survival = 12 months⇒ λControlFirst trial = 0.69
A�er 15 year, λSelectedLast trial = 0.46⇒ median survival = 18 months

HRseries = 0.67⇔ Total survival bene�t = 50%
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Performance metrics

10 000 repetitions of the 15-year research period
Expected total survival bene�t (Gain)

E
[
λControlFirst trial
λSelectedLast trial

− 1
]

Probability of a detrimental e�ect (Risk)
Probability that the event rate associated with the
treatment selected at the end of the 15 years is worse
than the baseline event rate

P
[
λSelectedLast trial > λControlFirst trial

]
12



Series of two-arm RCTs with an interim analysis (IA)

IA performed when 1/2 of the required events are
expected to be attained

• Wieand stopping rule for futility (Wieand et al., 1994)
ĤR > 1⇒ stop the trial for futility

• OBF β−spending stopping rule for futility (O’Brien
and Fleming, 1979)

• OBF α−spending stopping rule for e�cacy
• Combining the latter two
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Series of two-stage three-arm RCTs with treatment
selection at interim (Posch et al., 2005)

At the �rst stage
2 experimental treatments J1 = {1, 2} are compared to
the control and the best is selected for the second stage

At the second stage
Selected treatment compared to the control, combining
data from both stages at the multiple level α

• Closed testing procedure for multiple testing
• Simes test for intersection hypotheses
• Weighted inverse normal combination function for

stagewise p-values combination
14



STAGE 1 DATA
n1 patients per group

Test statistics Zj,1
P-values pj,1
j ∈ {1, 2}

All pj,1 >
threshold

Stop the trial

Select ’best’
(j∗)

STAGE 2 DATA
2 treatment comparison

(j∗ vs control)
n2 patients per group

Test statistics Zj∗
P-values pj∗

Testing strategy
Assume that j∗ = 1

Stage 2 nominal α
H1 can be rejected if:
C(p1,1, p1,2) < α

C(p12,1, p12,2) < α

Decision making and testing strategy for the two-stage
adaptive treatment selection design, adapted from
Dmitrienko et al. (2009) 15
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Design parameters

Series of 2-arm trials with
interim analysis

Interim analysis
• No interim analysis
• Wieand stopping rule for futility
• OBF β−spending stopping rule for futility
• OBF α−spending stopping rule for e�cacy
• Combining the latter two

One-sided α-level:
0.025, 0.05, 0.1, 0.2

Series of 3-arm trials with
selection at interim

First stage threshold:
0.05, 0.1, 0.15, 0.2

Second stage α-level:
0.025, 0.05, 0.1, 0.2
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Results

Accrual rate = 50 patients/year
Baseline median survival = 1 year

Historical distribution of treatment e�ects
90% power for an expectedHR of 0.6
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Results - Inclusion of an interim analysis
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Results - Inclusion of an interim analysis

Accrual rate = 50 patients/year
Di�erent baseline hazards rates

Historical distribution of treatment e�ects
90% power for an expectedHR of 0.6

Median survival of 6 months Median survival of 1 year Median survival of 2 years 2-year survival rate of 75%
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Results - Inclusion of an interim analysis

Accrual rate = 50 patients/year
Baseline median survival = 1 year

Di�erent distributions of treatment e�ects
90% power for an expectedHR of 0.6

More optimistic Historical More pessimistic Very pessimistic
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Results - Designs comparison

Accrual rate = 50 patients/year
Baseline median survival = 1 year

Historical distribution of treatment e�ects
90% power for an expectedHR of 0.6

Series of 2-arm RCTs with interim analysis Series of 3-arm RCTs with selection at interim
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Results - Optimal designs

Argmax E
[
λControlFirst trial
λSelectedLast trial

− 1
]

subject to P
[
λSelectedLast trial > λControlFirst trial

]
< 1.0%

Accrual rate = 50 patients/year
Baseline median survival = 1 year

Historical distribution of treatment e�ects
90% power for an expectedHR of 0.6

Optimal design
Traditional

design
Series of 2-arm RCTs

with no interim analysis
Series of 2-arm RCTs
with interim analysis

Series of 3-arm RCTs
with selection at interim

α-level 0.025 0.1 0.1 0.1
Interim analysis None None Wieand threshold = 0.2

Number of trial 3.0 4.0 4.7 4.3
Gain 27.0% 36.1% 39.6% 42.7%
Risk 0.33% 1.03% 0.91% 0.87%
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Results - Optimal designs

For the 288 possible combinations of simulation parameters
Series of 2-arm RCTs with interim analysis

One-sided α-level

Interim Analysis 0.025 0.05 0.1 0.2

No interim analysis 0.0% 0.3% 1.4% 1.0% 2.8%
Wieand stopping rule for futility 5.6% 4.5% 4.5% 25.8% 40.4%
OBF β−spending stopping rule for futility 5.2% 5.9% 2.1% 2.4% 15.7%
OBF α−spending stopping rule for e�cacy 0.3% 2.1% 0.7% 1.0% 4.2%
Combining the latter two 5.2% 11.5% 4.5% 15.7% 36.9%

16.4% 24.4% 13.2% 46.0% Total

Series of 3-arm RCTs with selection at interim
Second stage α-level

First stage threshold 0.025 0.05 0.1 0.2

0.05 0.4% 0.0% 0.7% 0.7% 1.8%
0.1 3.7% 0.7% 1.1% 0.4% 5.9%
0.15 10.7% 8.1% 5.1% 2.2% 26.1%
0.2 4.4% 6.6% 12.9% 42.3% 66.2%

19.1% 15.4% 19.9% 45.6% Total
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Results - Optimal designs

Comparison of the performance of optimal designs for the 288
possible combinations of simulation parameters

For the same number of trials, a series of 3-arm RCTs test twice
more experimental treatments than a series of 2-arm RCTs
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Conclusion

Even when including interim analysis or two-stage
design with treatment selection at interim, we still
recommend to relax α-level

Our recommendation is only valid when considering a
series of trials run over a relatively long research
horizon and when the supply of new treatments is large
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Q & A

Please, send any additional questions or comments to:
Mohamedamine.BAYAR@gustaveroussy.fr
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Simulation parameter

Hypotheses of how treatments improve over time :
future treatment e�ects

Relative characterization
Hazard Ratio

E[HR] P[HR 6 0.5]

0.925 0.02
0.950 0.02
0.950 0.01
1.000 0.01

Absolute characterization
Hazard Rate

λE(t) ∼ logN (µ(t), σ2)

µ(t) = a× t+ b

E[λE(t)] = eµ(t)+ 1
2σ

2

SD[λE(t)] = eµ(t)+ 1
2σ

2√eσ2 − 1
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Stage 1 Stage 2
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Figure 1: P-value de�nitions of the closed testing procedure
using the Simes test for intersection hypotheses, adapted
from Dmitrienko et al. (2009)
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from Dmitrienko et al. (2009)



Results - Sensitivity analysis

Accrual rate = 50, 100, 200 patients/year
Baseline median survival = 1 year

Historical distribution of treatment e�ects
90% power for an expectedHR of 0.6

Accrual rate = 50 patients/year Accrual rate = 100 patients/year Accrual rate = 200 patients/year
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