

Bayesian hierarchical models for adaptive randomization in biomarker-driven studies: Umbrella and platform trials

William T. Barry, PhD

Nancy and Morris John Lurie Investigator Biostatistics and Computational Biology Dana-Farber Cancer Institute

Nov 9th, 2017

Motivation for biomarker-driven trials in oncology (in brief)

• Molecular heterogeneity of cancer is no longer a hypothesis, but known, measurable, and quantified.

<u>Personalized/precision medicine</u>: A fundamental assumption is that using the genetic makeup of the tumor and the genotype of the patient will enable targeted therapeutics to improve clinical outcomes.

- Increased development of targeted therapies in oncology
- Components of multiplex genomic screening platforms are converging increasing overlapping

Motivation for biomarker-driven trials in oncology (in brief)

- Many innovative clinical trials designs in oncology. Important to distinguish elements:
 - Bayesian vs frequentist analysis plans
 - Comparative vs non-comparative hypotheses
 - Single-stage vs. sequential vs. continual assessment
 - Adaptive vs fixed randomization.
 - Hypotheses within or across marker-defined subgroups

Biomarker-driven designs

Integral biomarkers - Tests inherent in the design from the onset and must be performed in real time for the conduct of the trial (re: participant flow)

- Single marker / treatment
 - Enrichment designs (e.g. B31/N9831)
 - Stratified designs (TKIs and PI3Ki in Br)
- Multiple markers / treatments
 - Basket and Umbrella trial (BATTLE)
 - Platform trials
 - NCI-MATCH
 - I-SPY 2
 - Marker-strategy designs (SHIVA)

Herbst et al. Clin Cancer Res 2015;21:1514-1524

Zhou et al. (2008) Clinical Trials 5:181-193 – Method (but no code) fully specified

Kim et al. (2011) Cancer Discovery 1:44-53 – Primary results

BATTLE trial design:

- Hierarchical model
- Bayesian (non-comparative) inference.
- Continual assessment
- Adaptive randomization

Kass and Steffey, 1989: Conditional independence of y_n given θ . Further, $\{\theta_{jk} | \phi\}$ are i.i.d., such that the elements of y_n are exchangeable.

$$y_n|\theta \sim p(y_n|\theta) = \prod_{jk} \prod_{i=1}^{n_{jk}} p(y_i|\theta_{jk}) \qquad \theta|\phi \sim p(\theta|\phi) = \prod_{jk} p(\theta_{jk}|\phi)$$

Binary outcome and (one possible) probit hierarchical model:

 $y_{ijk} = \begin{cases} 1 & \text{if patient } i \text{ with marker } k \text{ had a response in treatment } j \\ 0 & \text{otherwise} \end{cases}$

$$= \begin{array}{ccc} 1 & & z_{ijk} \geq 0 \\ 0 & & z_{ijk} < 0 \end{array}$$

where z_{ijk} is a latent variable that follows a Gaussian distribution.

$$Z_{ijk} \sim N(\mu_{jk}, 1)$$
 $\mu_{jk} \sim N(\phi_j, \sigma^2)$ $\phi_j \sim N(\alpha, \tau^2)$

 σ^2 controls the extent of borrowing across marker groups within each treatment and α and τ^2 are the second-stage priors to the model.

BATTLE trial design:

- Hierarchical model
- Bayesian (non-comparative) inference.
- Continual assessment
- Adaptive randomization

Futility treatment *j* is suspended within biomarker group *k* under

 $Pr(\Phi^{-1}(\mu_{jk}) \ge 0.5 | y_n) < 10\%$

Efficacy likewise treatment within biomarker group (i.e. 'non-comparative')

 $Pr(\Phi^{-1}(\mu_{jk}) \ge 0.3 | y_N) > 80\%$

See Zhou et al (2008) for operating characteristics w/ varying $\{\mu_{jk}\}$

BATTLE trial design:

- Hierarchical model
- Bayesian (non-comparative) inference.
- Continual assessment
- Adaptive randomization

$$\mathbf{r}_{jk,n} = \frac{\hat{\pi}_{jk,n}}{\sum_{w \in \Omega_{k,n}} \hat{\pi}_{wk,n}} \quad \text{where} \quad \hat{\pi}_{jk,n} = E[\Phi^{-1}(\mu_{jk})|y_n]$$

Kim (2011): We planned to randomly assign at least the initial **80** patients equally to the 4 treatments, to allow at least 1 patient in each marker group to complete treatment, thus providing sufficient data to estimate the prior probability of [disease control]

Barry et al. JBS 2015: The use of Bayesian hierarchical models for adaptive randomization in biomarker-driven phase II studies

Research goals:

- **Evaluate properties of BATTLE** ٠ (PI: Kim), as one of the first umbrella trials
- In silico simulation (R code as appendix)
- Contrast RAR and continual assessment versus traditional Simon two-stage designs

Scenarios that represent the simplest cases for using predictive biomarker(s) in a two-drug study are:

- Evaluating a novel targeted agent against a standard-of-care with a single predictive biomarker, and
- Evaluating multiple experimental agents using marker(s) selective in a complementary manner.

	Single biomarker		Complementary biom.		
	Marker +	Marker -	Marker +	Marker -	
Trt A	θ_1	θ_0	θ_1	θ_0	
Trt B	θ_0	θ_0	θ_0	θ_1	

For the following illustrations: $\theta_0 = 25\%$ $\theta_1 = 50\%$

Barry et al. JBS 2015: The use of Bayesian hierarchical models for adaptive randomization in biomarker-driven phase II studies

For the following illustrations:

Research goals:

- Evaluate properties of BATTLE (PI: Kim), as one of the first umbrella trials
- In silico simulation (R code as appendix)
- Contrast RAR and continual assessment versus traditional Simon two-stage designs

Assig

Assigned effective tx

	Single biomarker			Complementary biom.		
	Marker + Marker -			Marker +	Marker -	
Trt A	$ heta_1$	θ_0		θ_1	$ heta_{O}$	
Trt B	$ heta_0$	$ heta_{0}$		θ_0	$ heta_1$	

Sample sizes that achieve 80% power

 $\theta_0 = 25\%$ $\theta_1 = 50\%$

Barry et al. JBS 2015: The use of Bayesian hierarchical models for adaptive randomization in biomarker-driven phase II studies

Research goals:

- Evaluate properties of BATTLE (PI: Kim), as one of the first umbrella trials
- In silico simulation (R code as appendix)
- Contrast RAR and continual assessment versus traditional Simon two-stage designs
- Conclusions:
 - (Nearly) equal efficiency
 - Less variability in E[N]

Lessons learned from BATTLE:

 Challenge to make reliable assumptions about prevalence of biomarkers

Group	Ехр	Obs
1	10%	36%
2	20%	11%
3	30%	34%
4	25%	2%
5	10%	17%

Negative multinomial distribution

NCI-MATCH: Molecular Analysis for Therapy Choice

THIS PRECISION MEDICINE TRIAL EXPLORES TREATING PATIENTS BASED ON THE MOLECULAR PROFILES OF THEIR TUMORS

DANA-FA

NCI-MATCH* IS FOR ADULTS WITH:

- solid tumors (including rare tumors) and lymphomas
- tumors that no longer respond to standard treatment

Statistical Design:

- 1° Endpoint:
 - Obj resp (RECIST1.1)
 - Null: 5%
 - Target: 25%
- Single-stage test
 - Enroll 35 pts per arm (N = 31 eval)
 - 5 or more resp.
 - α = 0.018
 - β = 0.083

Protocol allows for expansion cohorts; not statistically driven

NCI-MATCH: Molecular Analysis for Therapy Choice

Study History	
Aug 2015	Activated with 10 initial drug arms and target N = 3000
Nov 2015	Suspended enrollment for planned evaluation 795 pts registered (739 w/ samples submitted) 645 pts completed screening 56 pts with a matching mutation (8.7%) 33 pts eligible and enrolled (5.1%) 16 pts received Tx (2.5%)
Feb 2016	Re-activated with addendum #2 Expanded eligibility to myeloma Increased to N = 5000 Increased to total of 24 treatment arms Revised estimate was 23% of pts match
Jun 2017	Reached (revised) target of N = 6000 pts 19 of 26 treatment arms still seeking patients Enrollment to sub-studies to continue through other mech's

http://ecog-acrin.org/nci-match-eay131

Snapshot of study status (Nov 2016)

Increased Target N: 6000 pts

24 gene alt'ns being targeted

Arn	n / Target	Expected # Patients
Ι	PIK3CA mut	137
W	FGFR1/2/3	124
Р	PTEN loss	79
Z1A	NRAS mut	70
S1	NF1 mut	66
Z1D) dMMR	63
Ν	PTEN mut	62
Q	ERBB2 amp	59
В	ERBB2 mut	39
C2	MET ex 14 sk	37
Z1B	CCND1 amp	36
Y	AKT1 mut	32

Arm / Target	Expected # Patients
R BRAF non V600	29
H BRAF V600	26
T SMO/PTCH1	18
U NF2 loss	17
C1 MET amp	14
A EGFR mut	8
G ROS1 transloc	8
S2 GNAQ/GNA11	3
E EGFR T790M	1
F ALK transloc	1
X DDR2 mut	0
V cKIT mut	0

http://ecog-acrin.org/nci-match-eay131

NCI-MATCH: Molecular Analysis for Therapy Choice

Ongoing work by R Sapigao:

- In silico simulation of the dynamic aspect of adding arms to NCI-MATCH over time and replacing completed arms
- Explore the properties of twoand three-stage designs in this framework
- Add (simulated) responses and assess Bayesian methods for continual assessment.

Barry et al. JBS 2015: The use of Bayesian hierarchical models for adaptive randomization in biomarker-driven phase II studies

Lessons learned from BATTLE:

- Challenge to make reliable assumptions about prevalence of biomarkers
- Adapting w/ small n_{ik}

without borrowing ($\sigma^2 = 10^6$) and a non-informative prior ($\tau^2 = 10^6$). NOTE: assuming true equipoise and no lag at n = 97.

Barry et al. JBS 2015: The use of Bayesian hierarchical models for adaptive randomization in biomarker-driven phase II studies

Lessons learned from BATTLE:

- Challenge to make reliable assumptions about prevalence of biomarkers
- Adapting w/ small n_{jk}

Randomization.Ratio

In Barry (in press) we advocate informative prior (e.g. $\tau^2 = 0.01$), though at n = 97 the likelihood will still dominate under this hierarchy.

ormative prior ($\tau^2 = 10^6$). 1 at n = 97.

Lessons learned from BATTLE:

- Challenge to make reliable assumptions about prevalence of biomarkers
- Adapting w/ small n_{jk}
- Inference w/ small n_{ik}

```
Pr(\Phi^{-1}(\mu_{jk}) \ge 0.3 | y_N) > 80\%
```

	Number of pa	tients with disease c	ontrol / total number	of patients (%)	
		Treat	ment		
Marker group			Erlotinib +		Total
	Erlotinib	Vandetanib	bexarotene	Sorafenib	
EGFR	6/17 (35%)	11/27 (41%)°	11/20 (55%)*	9/23 (39%)	37/87 (43%)
KRAS/BRAF	1/7 (14%)	0/3 (0%)	1/3 (33%)	11/14 (79%)ª	13/27 (48%)
VEGF/VEGFR-2	10/25 (40%)ª	6/16(38%)	0/3 (0%)	25/39 (64%)*	41/83 (49%)
RXR/Cyclin D1	0/1 (0%)	0/0 (NA)	1/1 (100%)"	1/4 (25%)	2/6 (33%)
None	3/8 (38%)	0/6 (0%)	5/9 (56%)°	11/18(61%)*	19/41 (46%)
Total	20/58 (34%)	17/52 (33%)	18/36 (50%)	57/98 (58%)	112/244 (46%)

Likewise, Pr > 99.9% when $n_{ij} = 1$, $y_{1jk} = 1$ and $\sigma^2 \rightarrow \infty$.

I-SPY 2: Umbrella / platform (and adaptive)

Images courtesy of Dr Rugo

Study design

- Randomized phase II
- Compare to concurrent control arm (T→AC)
- 1° endpoint: path CR
- Integral biomarkers
 - HER2
 - HR
 - Mammoprint
- Bayesian analysis plan (next slide)
- Intended to allow up to 4 experimental arms.

BATTLE trial design:

- Hierarchical model
- Bayesian (comparative) inference.
- Continual assessment

Logistic model for pCR

Threshold for 'graduation' of a regimen after 60 pts. Evidence (by pCR) that a future N=300 phase III study would be positive in any marker-defined subgroup: >85% PP

Threshold for futility if <10% PP in all markersubgroups after 20 pts.

Note: function of two parameters, π_e and π_c

• Adaptive randomization

AR is proportional to the posterior prob. a given tx is superior. Priors (appear to be) fully specified; depend on I-SPY 1

Rugo HS et al. N Engl J Med 2016;375:23-34. Barker et al. Clin Pharmacol Ther. 2009; 86: 97– 100.

Study History	NCT00409968
Mar 2010	Activated with 3 initial experimental arms: Figitumumab, Neratinib, Veliparib + Carboplatin
Dec 2013	Results on the first regimen to 'graduate' (Veliparib + Carboplatin) were reported at SABCS by Rugo et al. Rugo HS et al. N Engl J Med 2016;375:23-34
Apr 2014	Results on the 2 nd regimen to 'graduate' (Neratinib) were reported at AACR Park JW et al. N Engl J Med 2016;375:11-22
Jun 2015	Results for a 3 rd regimen to 'graduate', MK-2206 [AKTi], were reported at ASCO
Jun 2017	Results for a 4 th regimen to 'graduate', Pembrolizumab, were reported at ASCO

I-SPY 2: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer

- No negative arms have been published (risk of reporting bias)
- As an ongoing study, total study-status has never been publically disseminated (to my knowledge)
- Partial information can be gleaned from clinicaltrials.gov

2010 (Target N = 800)	2012	2014	2016 (Target N = 1920)
Neratinib	Ganitumab + Metformin	AMG 386 + Trastuzumab	PLX3397
Veliparib + Carboplatin	MK-2206 +/- Trastuzumab	T-DM1 and Pertuzumab	Pembrolizumab
Figitumumab (dropped by 2012)		Pertuzumab and Trastuzumab	Talazoparib + Irinotecan
+ AMG 386		Ganetespib	Patritumab +/- Trastuzumab
+ Conatumumab (dropped by 2012)			

I-SPY 2: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer

CONSORT: Veliparib/carboplatin

Rugo HS et al. N Engl J Med 2016;375:23-34.

I-SPY 2: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer

Results: Veliparib/carboplatin

Biomarker Signature	Estimated Rate of Pathological Complete Response (95% PI)		Probability of Veliparib–Carboplatin Being Superior to Control	Predictive Probability of Success in Phase 3 Trial
	Veliparib– Carboplatin	Control	percent	
All HER2 negative	33 (23–43)	22 (10–35)	91	53
Hormone-receptor positive and HER2 negative	14 (3-25)	19 (5–33)	28	8
Triple negative	51 (36-66)	26 (9–43)	99	88

* HER2 denotes human epidermal growth factor receptor 2, and PI probability interval.

"...We do not report the raw data within biomarker subtypes or signatures; our analysis carries greater precision than would a raw-data estimate"

Rugo HS et al. N Engl J Med 2016;375:23-34.

DANA-FARBER

ta within		Veliparib + Carboplatin	Control (T → AC)
es; our n than	Enrolled	N = 72	N = 44
	TN subset	N = 39	N = 19
	pCR	20	5
	No pCR	19	14
* imputed und	der simplified assump	otions Slide 25	HARVARD MEDICAL SCHOOL

Comments on transparency

- Motivation and general approach of I-SPY 2 were published with the launch of the trial (Barker et al. 2009) Insufficient details to evaluate the specific adaptive design.
- Consistent with ICMJE policy, the protocol was provided as supplemental material to the NEJM articles.
- With multiple appendices, the statistical methods appear to be specified but will be extremely challenging to reproduce. Priors require patient-level data from I-SPY 1.
- Software has not been made public
- The decision to redact raw data from publications is concerning
- Unknown what the dissemination plans will be for negative arms

Ventz et al. Biometrics 2017: Bayesian response-adaptive designs for basket trials

Research goals:

- Develop novel methods to build off genomic platforms (Dana-Farber: Oncopanel)
- Apply RAR designs (e.g. I-SPY 2) to 'basket' trial (NCI-MATCH)
- Construct hierarchical model for adaptive allocation and continual assessment
- Use in silico simulation to tune and evaluate properties
- Provided R package(s) for models and simulation.
 http://bcb.dfci.harvard.edu/~steffen/software.html

Closing remarks

- The use of master protocols (whether umbrella, basket, or platform designs) will continue to grow for trials within and across traditional disease types.
- Choice of trial design depends on many parameters:
 - Distribution of clinical outcomes, and hypothesized treatment effects
 - Marker prevalence, preliminary evidence a biomarker is predictive / prognostic, feasibility of real-time assessment, and operational resources.
- Adaptive designs give flexibility, but <u>always</u> at some cost; and it may be hard to ascertain utility
 - Response-adaptive randomization will be controversial among statisticians.
 - Adaptive enrichment designs have the potential to achieve goals of populationfinding with targeted therapies.
- Adaptive platform trials are forcing us to revisit old arguments on transparency and ways to facilitate the reproducible research

Acknowledgements

Duke University and UNC Joe Ibrahim Chuck Perou Lisa Carey

Kelly Marcom

Dana-Farber Cancer Institute Steffen Ventz Lorenzo Trippa Giovanni Parmigiani Rosemarie Sapigao Meredith Regan Richard Gelber NCTN biostatistician: Don Berry Mary Redman Bob Grey

